How do I differentiate y= sec^2(x) + tan^2(x)?

1 Answer
Mar 11, 2015

Use the chain rule (generalized power rule) and the derivatives of the trigonometric functions. Beyond that, there are choices you can make

Choice 1:
It may help to re-write it as:
y=(secx)^2+(tanx)^2. So

(dy)/(dx)=2(secx)*d/(dx)(secx) + 2(tanx)*d/(dx)(tan x) Thus<

(dy)/(dx)=2secx*secxtanx+2tanx*sec^2x

(dy)/(dx)=4sec^2xtanx.

Which, since sec^2x=tan^2x+1, could also be written

(dy)/(dx)=4tan^3x+4tanx

Choice 2:
Use the trigonometric identity to re-write the function using tanx:
y=sec^2x+tan^2x=(tan^2x+1)+tan^2x=2tan^2x+1

So,
(dy)/(dx)=4tanxd/(dx)(tanx)=4tanxsec^2x

Choice 3:
Use the trigonometric identity just mentioned to re-write the function using secx:

y=sec^2x+tan^2x=sec^2x+sec^2x-1=2sec^x-1
So,
(dy)/(dx)=4secxd/(dx)(secx)=4secxsecxtanx=4sec^2xtanx