How do I find inttan^4x dx?

1 Answer
Mar 7, 2015

Well, this one is quite difficult;

inttan^4(x)dx=int tan^2(x)tan^2(x)dx=
=intsin^2(x)/cos^2(x)tan^2(x)dx=
=int(1-cos^2(x))/cos^2(x)tan^2(x)dx=
=int[1/cos^2(x)-1]tan^2(x)dx=
=int[tan^2(x)/cos^2(x)-tan^2(x)]dx=
But d[tan(x)]=1/cos^2(x)dx

=inttan^2(x)d[tan(x)]-inttan^2(x)dx=
=tan^3(x)/3-inttan^2(x)dx=
=tan^3(x)/3-intsin^2(x)/cos^2(x)dx=
=tan^3(x)/3-int[(1-cos^2(x))/cos^2(x)]dx=
=tan^3(x)/3-{int1/cos^2(x)dx-intdx}=
=tan^3(x)/3-tan(x)-x+c