How do I find inttan^4x dx? Calculus Techniques of Integration Integration by Trigonometric Substitution 1 Answer Gió Mar 7, 2015 Well, this one is quite difficult; inttan^4(x)dx=int tan^2(x)tan^2(x)dx= =intsin^2(x)/cos^2(x)tan^2(x)dx= =int(1-cos^2(x))/cos^2(x)tan^2(x)dx= =int[1/cos^2(x)-1]tan^2(x)dx= =int[tan^2(x)/cos^2(x)-tan^2(x)]dx= But d[tan(x)]=1/cos^2(x)dx =inttan^2(x)d[tan(x)]-inttan^2(x)dx= =tan^3(x)/3-inttan^2(x)dx= =tan^3(x)/3-intsin^2(x)/cos^2(x)dx= =tan^3(x)/3-int[(1-cos^2(x))/cos^2(x)]dx= =tan^3(x)/3-{int1/cos^2(x)dx-intdx}= =tan^3(x)/3-tan(x)-x+c Answer link Related questions How do you find the integral int1/(x^2*sqrt(x^2-9))dx ? How do you find the integral intx^3/(sqrt(x^2+9))dx ? How do you find the integral intx^3*sqrt(9-x^2)dx ? How do you find the integral intx^3/(sqrt(16-x^2))dx ? How do you find the integral intsqrt(x^2-1)/xdx ? How do you find the integral intsqrt(x^2-9)/x^3dx ? How do you find the integral intx/(sqrt(x^2+x+1))dx ? How do you find the integral intdt/(sqrt(t^2-6t+13)) ? How do you find the integral intx*sqrt(1-x^4)dx ? How do you prove the integral formula intdx/(sqrt(x^2+a^2)) = ln(x+sqrt(x^2+a^2))+ C ? See all questions in Integration by Trigonometric Substitution Impact of this question 2313 views around the world You can reuse this answer Creative Commons License