How do I find the integral of #f(x)=cot^5xcsc^2x#? Calculus Techniques of Integration Integration by Trigonometric Substitution 1 Answer Jim H Mar 22, 2015 Use #u#-substitution: Let #u=cotx#. This makes #du=-csc^2x dx# and the integral becomes: #int cot^5xcsc^2x dx = - int u^5 du = -u^6/6+C# #=-1/6 cot^6x +C# Answer link Related questions How do you find the integral #int1/(x^2*sqrt(x^2-9))dx# ? How do you find the integral #intx^3/(sqrt(x^2+9))dx# ? How do you find the integral #intx^3*sqrt(9-x^2)dx# ? How do you find the integral #intx^3/(sqrt(16-x^2))dx# ? How do you find the integral #intsqrt(x^2-1)/xdx# ? How do you find the integral #intsqrt(x^2-9)/x^3dx# ? How do you find the integral #intx/(sqrt(x^2+x+1))dx# ? How do you find the integral #intdt/(sqrt(t^2-6t+13))# ? How do you find the integral #intx*sqrt(1-x^4)dx# ? How do you prove the integral formula #intdx/(sqrt(x^2+a^2)) = ln(x+sqrt(x^2+a^2))+ C# ? See all questions in Integration by Trigonometric Substitution Impact of this question 3029 views around the world You can reuse this answer Creative Commons License