How do I find the integral of f(x)=cot^5xcsc^2x? Calculus Techniques of Integration Integration by Trigonometric Substitution 1 Answer Jim H Mar 22, 2015 Use u-substitution: Let u=cotx. This makes du=-csc^2x dx and the integral becomes: int cot^5xcsc^2x dx = - int u^5 du = -u^6/6+C =-1/6 cot^6x +C Answer link Related questions How do you find the integral int1/(x^2*sqrt(x^2-9))dx ? How do you find the integral intx^3/(sqrt(x^2+9))dx ? How do you find the integral intx^3*sqrt(9-x^2)dx ? How do you find the integral intx^3/(sqrt(16-x^2))dx ? How do you find the integral intsqrt(x^2-1)/xdx ? How do you find the integral intsqrt(x^2-9)/x^3dx ? How do you find the integral intx/(sqrt(x^2+x+1))dx ? How do you find the integral intdt/(sqrt(t^2-6t+13)) ? How do you find the integral intx*sqrt(1-x^4)dx ? How do you prove the integral formula intdx/(sqrt(x^2+a^2)) = ln(x+sqrt(x^2+a^2))+ C ? See all questions in Integration by Trigonometric Substitution Impact of this question 3283 views around the world You can reuse this answer Creative Commons License