How do I find the orthogonal projection of a vector?

1 Answer
Oct 19, 2014

The orthogonal projection of vec{a} onto vec{b} can be found by

(vec{a}cdot vec{b}/|vec{b}|)vec{b}/|vec{b}|={vec{a}cdot vec{b}]/{vec{b}cdot vec{b}}vec{b}

Let us find the orthogonal projection of vec{a}=(1,0,-2) onto vec{b}=(1,2,3).

{(1,0,-2)cdot(1,2,3)}/{(1,2,3)cdot(1,2,3)}(1,2,3)={-5}/{14}(1,2,3)=(-5/14,-10/14,-15/14).


I hope that this was helpful.