How do solve ∫x tan^-1x dx, given that d/dx tan^-1x = 1/(1+x^2) ?
1 Answer
Explanation:
I=intxtan^-1(x)dx
We will use integration by parts. Integration by parts takes the form
Since we cannot integrate
Differentiating
u=tan^-1(x)" "=>" "du=1/(1+x^2)dx dv=xdx" "=>" "v=x^2/2
Then:
I=uv-intvdu=x^2/2tan^-1(x)-intx^2/2(1/(1+x^2))dx
Simplifying slightly:
I=x^2/2tan^-1(x)-1/2intx^2/(1+x^2)dx
Rewrite the integrand as follows, or perform polynomial long division on
I=x^2/2tan^-1(x)-1/2int(1+x^2-1)/(1+x^2)dx
I=x^2/2tan^-1(x)-1/2int(1+x^2)/(1+x^2)dx-1/2int1/(1+x^2)dx
I=x^2/2tan^-1(x)-1/2intdx-1/2int(-1)/(1+x^2)dx
Note that
I=x^2/2tan^-1(x)-1/2x+1/2tan^-1(x)
Which we may write as:
I=(x^2tan^-1(x)-x+tan^-1(x))/2
Rearranging and adding the constant of integration:
I=((x^2+1)tan^-1(x)-x)/2+C