How do you calculate int6dx /sqrt[4-(x-1)^2]?

1 Answer
Apr 3, 2015

Answer is:
6sin^-1((x - 1)/2) + c

To me the me the easiest way to evaluate this is to use a substitution that takes sinx
Because int1/(sqrt(1 - x^2))dx = sin^-1(x) + c
Right?

**To Evaluate : ** 6int1/(sqrt(4 - (x - 1)^2))dx

step1:

let x - 1 = 2sintheta => (dx)/(d theta) = 2cos theta => dx = 2costheta*d theta

so that,

(x - 1)^2 = 4sin^2theta

4 - (x - 1)^2 = 4 - 4sin^2theta

sqrt(4 - (x - 1)^2) = sqrt(4 - 4sin^2(theta)) = sqrt(4(1 - sin^2theta)) = sqrt(4cos^2theta)
= 2costheta

1/(sqrt(4 - (x - 1)^2)) = 1/(2costheta)

=> 6int1/(sqrt(4 - (x - 1)^2))dx = 6int1/(2costheta)*2costheta*d theta

= 6intd theta = 6*theta + c
Remember that x - 1 = 2sintheta => theta = sin^-1((x - 1)/2)

=> 6theta + c = 6*sin^-1((x - 1)/2) + c