How do you derive the half angle formula for sin,cos and tan?

1 Answer
Jun 12, 2015

You can start from sin^2(x).

sin^2x = (1-cos(2x))/2

Similarly:
sin^2(x/2) = (1-cosx)/2

Thus:
sin(x/2) = pmsqrt((1-cosx)/2)
+ if in quadrant I or II
- if in quadrant III or IV

Analogously:
cos(x/2) = pmsqrt((1+cosx)/2)
+ if in quadrant I or IV
- if in quadrant II or III

Therefore:
tan(x/2) = sin(x/2)/cos(x/2) = [(pmsqrt((1-cosx)/2)) / (pmsqrt((1+cosx)/2))]

= pmsqrt((1-cosx)/(1+cosx))
+ if in quadrant I or III
- if in quadrant II or IV

In quadrant I, the division gives (+/+) = +

In quadrant III, the division gives (-/-) = +

In quadrant II, the division gives (+/-) = -

In quadrant IV, the division gives (-/+) = -