How do you differentiate f(x)=(1-secx)/(tanx)?

2 Answers
Jan 8, 2017

f(x) = (1 - 1/cosx)/(sinx/cosx)

f(x) = ((cosx- 1)/cosx)/(sinx/cosx)

f(x) = (cosx - 1)/cosx * cosx/sinx

f(x) = (cosx - 1)/sinx

Use the quotient rule.

f'(x) = (-sinx(sinx) - (cosx - 1)(cosx))/(sinx)^2

f'(x) = (-sin^2x - cos^2x + cosx)/(sinx)^2

f'(x) = (-(sin^2x + cos^2x) + cosx)/sin^2x

f'(x) = (cosx - 1)/sin^2x

Hopefully this helps!

Jan 8, 2017

f'(x)=cscx(cotx-cscx).

Explanation:

f(x)=(1-secx)/tanx=1/tanx-secx/tanx=cotx-secx/(sinxsecx)

:. f(x)=cotx-cscx

:. f'(x)=-csc^2x-(-cscxcotx)=cscx(cotx-cscx).