How do you differentiate f(x)=(2cosx)/(x+1)?
1 Answer
Sep 17, 2016
Explanation:
differentiate using the
color(blue)"quotient rule" If
f(x)=(g(x))/(h(x)) then
color(red)(bar(ul(|color(white)(a/a)color(black)(f'(x)=(h(x)g'(x)-g(x)h'(x))/(h(x))^2)color(white)(a/a)|)))
color(blue)"----------------------------------------------------------------" here
g(x)=2cosxrArrg'(x)=-2sinx and
h(x)=x+1rArrh'(x)=1
color(blue)"-----------------------------------------------------------------"
substitute these values into f'(x)
rArrf'(x)=((x+1)(-2sinx)-2cosx(1))/(x+1)^2
=(-2(x+1)sinx-2cosx)/(x+1)^2