How do you differentiate #f(x)=(2cosx)/(x+1)#?
1 Answer
Sep 17, 2016
Explanation:
differentiate using the
#color(blue)"quotient rule"# If
#f(x)=(g(x))/(h(x))# then
#color(red)(bar(ul(|color(white)(a/a)color(black)(f'(x)=(h(x)g'(x)-g(x)h'(x))/(h(x))^2)color(white)(a/a)|)))#
#color(blue)"----------------------------------------------------------------"# here
#g(x)=2cosxrArrg'(x)=-2sinx# and
#h(x)=x+1rArrh'(x)=1#
#color(blue)"-----------------------------------------------------------------"#
substitute these values into f'(x)
#rArrf'(x)=((x+1)(-2sinx)-2cosx(1))/(x+1)^2#
#=(-2(x+1)sinx-2cosx)/(x+1)^2#