How do you differentiate f(x)=(2cosx)/(x+1)?

1 Answer
Sep 17, 2016

(-2(x+1)sinx-2cosx)/(x+1)^2

Explanation:

differentiate using the color(blue)"quotient rule"

If f(x)=(g(x))/(h(x)) then

color(red)(bar(ul(|color(white)(a/a)color(black)(f'(x)=(h(x)g'(x)-g(x)h'(x))/(h(x))^2)color(white)(a/a)|)))
color(blue)"----------------------------------------------------------------"

here g(x)=2cosxrArrg'(x)=-2sinx

and h(x)=x+1rArrh'(x)=1
color(blue)"-----------------------------------------------------------------"
substitute these values into f'(x)

rArrf'(x)=((x+1)(-2sinx)-2cosx(1))/(x+1)^2

=(-2(x+1)sinx-2cosx)/(x+1)^2