How do you differentiate f(x)=cosx(cotx)?

1 Answer
Nov 4, 2016

Differentiating f(x) comes to be -cosx((1+sin^2x)/sinx).

Explanation:

Let, y=f(x)=cosx*cotx
Therefore Differentiating y w.r.t x comes to be,

(dy)/(dx)=d/(dx)(cosx*cotx)
:.dy/dx=cosx*d/(dx)(cotx)+cotx*d/(dx)(cosx)
:.dy/dx=cosx*(-cosec^2x)+cotx*(-sinx)
:.dy/dx=-cosx/sin^2x-cosx=-cosx((1+sin^2x)/sinx). (answer).