How do you differentiate f(x)=cot(5x)+csc(5x)?

1 Answer
Mar 2, 2017

f'(x) = -5csc(5x)(csc(5x)+cot(5x))

Explanation:

f(x) = cot(5x) + csc(5x)

f'(x) = d/dx(cot(5x)) +d/dx(csc(5x))

Applying standard differentials and the chain rule to each term:

f'(x ) = -csc^2 (5x) * d/dx(5x) - cot(5x) * csc(5x) * d/dx(5x)

= -csc^2 (5x) * 5 - cot(5x) * csc(5x) * 5

=-5csc(5x)(csc(5x)+cot(5x))