How do you differentiate f(x)=(cotx)/(1+cotx)?
2 Answers
Explanation:
Explanation:
"differentiate using the "color(blue)"quotient rule"
"given "f(x)=(g(x))/(h(x))" then"
f'(x)=(h(x)g'(x)-g(x)h'(x))/(h(x))^2larrcolor(blue)"quotient rule"
g(x)=cotxrArrg'(x)=-csc^2x
h(x)=1+cotxrArrh'(x)=-csc^2x
rArrf'(x)=((1+cotx)(-csc^2x)+cotxcsc^2x)/(1+cotx)^2
color(white)(rArrf'(x))=(-csc^2xcancel(-cotxcsc^2c)cancel(+cotxcsc^2x))/(1+cotx)^2
=-(csc^2x)/(1+cotx)^2