How do you differentiate f(x)=csc5x^5?

1 Answer
Jul 25, 2017

f'(x)=-25x^4cot5x^5csc5x^5

Explanation:

we will need to use the chain rule;

(dy)/(dx)=(dy)/(du)xx(du)/(dx)

let

y=csc5x^5

let" "u=5x^5

:.y=cscu

=>(dy)/(du)=-cotucscu

(du)/(dx)=25x^4

(dy)/(dx)=(dy)/(du)xx(du)/(dx)

=>(dy)/(dx)=(-cotucscu)(25x^4)

substituting back for u and#f tidying up

f'(x)=-25x^4cot5x^5csc5x^5