How do you differentiate f(x)=sec(4x)/tan(4x)?

1 Answer
Nov 23, 2017

f'(x)=-4csc(4x)cot(4x)

Explanation:

sec(4x)=1/cos(4x)

So, f(x)=((1/cos(4x)))/tan(4x)=1/(cos(4x)tan(4x))

tan(4x)=sin(4x)/cos(4x)

cos(4x)*sin(4x)/cos(4x)=(cos(4x)sin(4x))/cos(4x)

(cancel(cos(4x))sin(4x))/cancel(cos(4x))=sin(4x)

f(x)=1/sin(4x)=u/v

u=1
v=sin(4x)

u'=0
v'=4cos(4x)

f'(x)=(vu'-uv')/v^2=>(0sin(4x)-1(4(cos(4x))))/sin^2(4x)

=-(4cos(4x))/sin^2(4x)

=-4/sin(4x)*cos(4x)/sin(4x)

=-4/sin(4x)cot(4x)

1/sin(4x)=csc(4x)

f'(x)=-4csc(4x)cot(4x)