How do you differentiate f(x) = sec(x^2 + 1)^2-tanx ?

1 Answer
Jul 6, 2018

f'(x)=4x(x^2+1)*sec(x^2+1)^2tan(x^2+1)^2-sec^2x

Explanation:

We know that ,

(1)d/(d theta)(sectheta)=secthetatantheta

(2)d/(d theta)(tantheta)=sec^2theta

Here ,

f(x)=sec(x^2+1)^2-tanx

Diff.w.r.t. x using (1) ,(2) and chain rule ,

f'(x)=sec(x^2+1)^2tan(x^2+1)^2(d/(dx)(x^2+1)^2)-sec^2x

f'(x)=sec(x^2+1)^2tan(x^2+1)^2[2(x^2+1)2x]-sec^2x

f'(x)=4x(x^2+1)*sec(x^2+1)^2tan(x^2+1)^2-sec^2x
………………………………………………………………………………..
Note :

(i)sec(x^2+1)^2 !=sec^2(x^2+1)

(ii)sec(x^2+1)^2=sec(x^4+2x^2+1)