We have: f(x) = sec(x^(2) + 1) - tan^(2)(x)
=> f'(x) = (d) / (dx) (sec(x^(2) + 1)) - (d) / (dx) (tan^(2)(x))
This function can be differentiated using the "chain rule" and the "sum rule".
Let u = x^(2) + 1 => u' = 2x and v = sec(u) => v' = sec(u) tan(u):
=> f'(x) = 2x cdot sec(u) tan(u) - (d) / (dx) (tan^(2)(x))
=> f'(x) = 2x sec(u) tan(u) - (d) / (dx) (tan^(2)(x))
We can now replace u with x^(2) + 1:
=> f'(x) = 2x sec(x^(2) + 1) tan(x^(2) + 1) - (d) / (dx) (tan^(2)(x))
Now, let u = tan(x) => u' = sec^(2)(x) and v = u^(2) => v' = 2 u:
=> f'(x) = 2x sec(x^(2) + 1) tan(x^(2) + 1) - (sec^(2)(x) cdot (2 u))
=> f'(x) = 2x sec(x^(2) + 1) tan(x^(2) + 1) - (2 sec^(2)(x) u)
We can now replace u with tan(x):
=> f'(x) = 2x sec(x^(2) + 1) tan(x^(2) + 1) - (2 sec^(2)(x) (tan(x)))
=> f'(x) = 2x sec(x^(2) + 1) tan(x^(2) + 1) - 2 sec^(2)(x) tan(x)