How do you differentiate f(x) = sec(x^2 + 1)-tan^2x ?

2 Answers
Aug 27, 2016

df(x) =-sec^2(x^2+1)*cos(x^2+1)*2x-2tanx*cos^2x

Explanation:

The decision based on the rules of differentiation of a composite function

Sep 4, 2016

2x sec(x^(2) + 1) tan(x^(2) + 1) - 2 sec^(2)(x) tan(x)

Explanation:

We have: f(x) = sec(x^(2) + 1) - tan^(2)(x)

=> f'(x) = (d) / (dx) (sec(x^(2) + 1)) - (d) / (dx) (tan^(2)(x))

This function can be differentiated using the "chain rule" and the "sum rule".

Let u = x^(2) + 1 => u' = 2x and v = sec(u) => v' = sec(u) tan(u):

=> f'(x) = 2x cdot sec(u) tan(u) - (d) / (dx) (tan^(2)(x))

=> f'(x) = 2x sec(u) tan(u) - (d) / (dx) (tan^(2)(x))

We can now replace u with x^(2) + 1:

=> f'(x) = 2x sec(x^(2) + 1) tan(x^(2) + 1) - (d) / (dx) (tan^(2)(x))

Now, let u = tan(x) => u' = sec^(2)(x) and v = u^(2) => v' = 2 u:

=> f'(x) = 2x sec(x^(2) + 1) tan(x^(2) + 1) - (sec^(2)(x) cdot (2 u))

=> f'(x) = 2x sec(x^(2) + 1) tan(x^(2) + 1) - (2 sec^(2)(x) u)

We can now replace u with tan(x):

=> f'(x) = 2x sec(x^(2) + 1) tan(x^(2) + 1) - (2 sec^(2)(x) (tan(x)))

=> f'(x) = 2x sec(x^(2) + 1) tan(x^(2) + 1) - 2 sec^(2)(x) tan(x)