How do you differentiate #f(x)=sec4x^5#?

1 Answer
Nov 2, 2016

THe answer is #=20x^4sec4x^5tan4x^5#

Explanation:

Firtst, we need rhe derivative of #secx#
We use #(u/v)'=(u'v-uv')/v^2#
#secx =1/cosx#
So #(secx)'=(1/cosx)'=(0*cosx-1*(-sinx))/cos^2x#
#=sinx/cos^2x=secxtanx#
#:.# #f'(x)=(sec4x^5)'=sec4x^5tan4x^5*(4x^5)'#
#=sec4x^5tan4x^5*20x^4#