How do you differentiate f(x)=sinx/(1-cosx)?

1 Answer
Oct 5, 2016

(df)/(dx)=-1/(1-cosx)

Explanation:

We use the quotient formula here. It states if f(x)=(g(x))/(h(x))

then (df)/(dx)=((dg)/(dx)xxh(x)-(dh)/(dx)xxg(x))/(h(x))^2

As f(x)=sinx/(1-cosx)

(df)/(dx)=(cosx xx(1-cosx)-sinx xxsinx)/(1-cosx)^2

= (cosx-cos^2x-sin^2x)/(1-cosx)^2

= (cosx-(cos^2x+sin^2x))/(1-cosx)^2

= (cosx-1)/(1-cosx)^2

= -(1-cosx)/(1-cosx)^2

= -1/(1-cosx)