How do you differentiate #g(t)=t^3cost#?

2 Answers
Jun 19, 2018

#g'(t)=3t^2cost-t^3sint#

Explanation:

We will differentiate #g(t)# using the product rule:
#[ab]'=a'b+b'a#, letting #a=t^3# and #b=cost#.
#a'=3t^2# and #b'=-sint#. Substituting #a# and #b# into the product rule, we get #[t^3cost]'=3t^2cost-t^3sint#, or #g'(t)=3t^2cost-t^3sint#.

Jun 19, 2018

#g'(t)=3t^2cost-t^3sint#

Explanation:

#"differentiate using the "color(blue)"product rule"#

#"given "g(t)=f(t)h(t)" then"#

#g'(t)=f(t)h'(t)+h(t)f'(t)larrcolor(blue)"product rule"#

#f(t)=t^3rArrf'(t)=3t^2#

#h(t)=costrArrh'(t)=-sint#

#g'(t)=-t^3sint+3t^2cost#