How do you differentiate g(x) = (cotx + cscx)(tanx - sinx) ?

1 Answer
Dec 6, 2015

g'(x)=secxtanx+sinx

Explanation:

First, simplify g(x).

g(x)=cotxtanx-cotxsinx+cscxtanx-cscxsinx

g(x)=1-cosx+secx-1

g(x)=secx-cosx

Now, all we need to find g'(x) are the following identities:

d/dx[secx]=secxtanx

d/dx[cosx]=-sinx

Thus, g'(x)=secxtanx+sinx

This can also be written as: g'(x)=sinx(sec^2x+1)