How do you differentiate g(x) = (cotx + cscx)/(tanx - sinx) ?

1 Answer
Jan 1, 2018

(dg)/(dx)=-cotxcot^2(x/2)(csc(x/2)+cscx)

Explanation:

Quotient rule states if g(x)=(a(x))/(b(x))

then (dg)/(dx)=((da)/(dx)xxb(x)-(db)/(dx)xxa(x))/(b(x))^2

Here a(x)=cotx+cscx and b(x)=tanx-sinx

i.e. (da)/(dx)=-csc^2x-cotxcscx and (db)/(dx)=sec^2x-cosx

Hence (dg(x))/(dx)=([(tanx-sinx)(-csc^2x-cotxcscx)-(sec^2x-cosx)(cotx+cscx)])/(tanx-sinx)^2

= ([-tanxcsc^2x-cscx+cscx+cotx -secxcscx-sec^2xcscx+cosxcotx+cotx])/(tanx-sinx)^2

= ([-tanxcsc^2x+2cotx -secxcscx-sec^2xcscx+cosxcotx])/(tanx-sinx)^2

We can simplify it further by converting each trigonometric ratio into sinx and cosx and simplifying it further

but the simpler way could be that as g(x)=(cotx+cscx)/(tanx-sinx)

= (cosx/sinx+1/sinx)/(sinx/cosx-sinx)

= ((cosx+1)/sinx)/((sinx-sinxcosx)/(sinxcosx)

= (cosx(1+cosx))/(sinx(1-cosx))

=cotxcot^2(x/2)

and hence (dg)/(dx)=2cotxcot(x/2)(-cot(x/2)csc(x/2))xx1/2+cot^2(x/2)(-cotxcscx)

= -cotxcot^2(x/2)csc(x/2)-cotxcscxcot^2(x/2)

= -cotxcot^2(x/2)(csc(x/2)+cscx)