How do you differentiate the following parametric equation: x(t)=t^3-5t, y(t)=(t-3) x(t)=t35t,y(t)=(t3)?

1 Answer
Jan 13, 2016

dy/dx = 1/(3t^2 - 5 ) dydx=13t25

Explanation:

x = t^3 - 5t rArr dx/dt = 3t^2 - 5 x=t35tdxdt=3t25

and y = t - 3 rArr dy/dt = 1 y=t3dydt=1

dy/dx = dy/dt xx dt/dx dydx=dydt×dtdx

note that: dt/dx =( 1)/(dx/dt) dtdx=1dxdt

rArr dy/dx = 1/(3t^2 - 5 ) dydx=13t25