How do you differentiate the following parametric equation: x(t)=t^3-5t, y(t)=(t-3) x(t)=t3−5t,y(t)=(t−3)?
1 Answer
Jan 13, 2016
Explanation:
x = t^3 - 5t rArr dx/dt = 3t^2 - 5 x=t3−5t⇒dxdt=3t2−5 and
y = t - 3 rArr dy/dt = 1 y=t−3⇒dydt=1
dy/dx = dy/dt xx dt/dx dydx=dydt×dtdx note that:
dt/dx =( 1)/(dx/dt) dtdx=1dxdt
rArr dy/dx = 1/(3t^2 - 5 ) ⇒dydx=13t2−5