How do you differentiate y=cscθ(θ+cotθ)?

1 Answer
Nov 22, 2017

dydθ=cscθ(θcotθ+cot2θ1+csc2θ)

Explanation:

we will need to use the product rule

ddx(uv)=vdudx+udvdx

y=cscθ(θ+cotθ)

dydθ=(θ+cotθ)ddθ(cscθ)+cscθdydθ(θ+cotθ)

dydθ=(θ+cotθ)(cscθcotθ)+cscθ(1csc2θ)

tiding up.

dydθ=cscθ(θcotθ+cot2θ1+csc2θ)