How do you differentiate #y=tanx-cotx#?
1 Answer
Dec 8, 2016
Explanation:
Convert to sine and cosine:
#y = sinx/cosx - cosx/sinx#
Differentiate using the quotient rule--twice.
#y' = (cosx xx cosx - (-sinx xx sinx))/(cosx)^2 - (-sinx xx sinx - (cosx xx cosx))/(sinx)^2#
#y'= (cos^2x +sin^2x)/cos^2x - (-sin^2x - cos^2x)/sin^2x#
#y' = 1/cos^2x + (cos^2x + sin^2x)/sin^2x#
#y' = 1/cos^2x + 1/sin^2x#
#y' = sec^2x + csc^2x#
Hopefully this helps!