How do you evaluate (56)^(7/2)?

1 Answer
Oct 7, 2016

351232sqrt(14)" " as an exact value

1314189.807" " to 3 decimal places as an approximate value

Explanation:

First of all lets do this using logs:

Let x=(56)^(7/2)

" "log(x)" "=" "log[ (56)^(7/2)]" " =" " 7/2log(56)~~6.1186...

=>color(green)(x=log^(-1)(6.1186..)~~1314189.807) to 3 decimal places

color(blue)("This is not a precise solution but will do as a check.")
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider again x=(56)^(7/2)

This is the same as: sqrt(56^7)" "=" "sqrt(56^2xx56^2xx56^2xx56)

=56^3sqrt(56)

Splitting 56 into a product of primes we observe:
Tony B

Giving:

56^3sqrt(2^2xx14)

2xx56^3sqrt(14)color(green)(~~1314189.807) to 3 decimal places

color(blue)("So the exact value is: "351232sqrt(14))