How do you evaluate and simplify 9/9^(-4/5)?

2 Answers
Jul 9, 2017

See a solution process below:

Explanation:

First, use this rule of exponents to eliminate the negative exponent:

1/x^color(red)(a) = x^color(red)(-a)

9/9^color(red)(-4/5) = 9 * 9^color(red)(- -4/5) = 9 * 9^(4/5)

Next, use these rules to combine the 9's terms:

a = a^color(red)(1) and x^color(red)(a) xx x^color(blue)(b) = x^(color(red)(a) + color(blue)(b))

9 * 9^(4/5) => 9^color(red)(1) * 9^color(blue)(4/5) => 9^(color(red)(1)+color(blue)(4/5)) => 9^(color(red)(5/5)+color(blue)(4/5)) =>

9^(9/5)

Jul 9, 2017

:.color(blue)(=52.196 to the nearest 3 decimal places

Explanation:

9/(1/9^(-4/5))

:.1/a^-2=a^2

:.=9/(1/9^(4/5))

:.=9/1 xx 9^(4/5)/1

:.=9^(5/5) xx 9^(4/5)

:.=9^(9/5)

:.=root5(9^9)

:.=root5(9*9*9*9*9*9*9*9*9)

:.root5(9)*root5(9)*root5(9)*root5(9)*root5(9)=9

:.=9root5(9*9*9*9)

:.=9root5(3*3*3*3*3*3*3*3)

:.root5(3)*root5(3)*root5(3)*root5(3)*root5(3)=3

:.=3*9root5(27)

:.=27root5(27)

:.=52.19591521

:.color(blue)(=52.196 to the nearest 3 decimal places