How do you evaluate int 1/(9+x^2) from [sqrt3,3]?

1 Answer
Jan 11, 2017

pi/36.

Explanation:

Let I=int_sqrt3^3 1/(x^2+9)dx.

By the Fundamental Theorem of Calculus,

intf(x)=F(x)+C rArr int_a^bf(x)dx=[F(x)]_a^b=F(b)-F(a).

Since, int1/(x^2+a^2)dx=1/aarc tan(x/a)+c, we have,

I=1/3[arc tan(x/3)]_sqrt3^3

1/3[arc tan(3/3)-arc tan(sqrt3/3)]

=1/3[pi/4-pi/6]

:. I=pi/36.

Enjoy Maths.!