How do you evaluate int arccosx/sqrt(1-x^2) from [0, 1/sqrt2]?
1 Answer
Jan 18, 2017
Explanation:
I=int_0^(1/sqrt2)arccosx/sqrt(1-x^2)dx
It's important to know that
Also note that the bounds will change:
x=1/sqrt2" "=>" "u=arccos(1/sqrt2)=pi/4
x=0" "=>" "u=arccos(0)=pi/2
Then:
I=-int_0^(1/sqrt2)arccosx((-1)/sqrt(1-x^2)dx)
I=-int_(pi/2)^(pi/4)u color(white).du
I=int_(pi/4)^(pi/2)ucolor(white).du
I=1/2u^2|_(pi//4)^(pi//2)
I=1/2((pi/2)^2-(pi/4)^2)
I=1/2(pi^2/4-pi^2/16)
I=1/2((4pi^2-pi^2)/16)
I=(3pi^2)/32