How do you evaluate int arccosx/sqrt(1-x^2) from [0, 1/sqrt2]?

1 Answer
Jan 18, 2017

int_0^(1/sqrt2)arccosx/sqrt(1-x^2)dx=(3pi^2)/32

Explanation:

I=int_0^(1/sqrt2)arccosx/sqrt(1-x^2)dx

It's important to know that d/dxarccosx=(-1)/sqrt(1-x^2). So, if we let u=arccosx then du=(-1)/sqrt(1-x^2)dx.

Also note that the bounds will change:

x=1/sqrt2" "=>" "u=arccos(1/sqrt2)=pi/4

x=0" "=>" "u=arccos(0)=pi/2

Then:

I=-int_0^(1/sqrt2)arccosx((-1)/sqrt(1-x^2)dx)

I=-int_(pi/2)^(pi/4)u color(white).du

I=int_(pi/4)^(pi/2)ucolor(white).du

I=1/2u^2|_(pi//4)^(pi//2)

I=1/2((pi/2)^2-(pi/4)^2)

I=1/2(pi^2/4-pi^2/16)

I=1/2((4pi^2-pi^2)/16)

I=(3pi^2)/32