How do you evaluate int cosx/(1+sin^2x)cosx1+sin2x from [0, pi/2][0,π2]?

1 Answer
Nov 9, 2016

intcosx/(1+sin^2x)dx=pi/4cosx1+sin2xdx=π4

Explanation:

First examining without the bounds:

I=intcosx/(1+sin^2x)dxI=cosx1+sin2xdx

Let sinx=tanthetasinx=tanθ. This may look like a wild substitution, but the goal is to get the denominator of the fraction to 1+tan^2theta=sec^2theta1+tan2θ=sec2θ. Note that differentiating sinx=tanthetasinx=tanθ gives cosxdx=sec^2thetad thetacosxdx=sec2θdθ. It's also helpful that cosxdxcosxdx is already present in the integrand. Substituting these in:

I=intsec^2theta/(1+tan^2theta)d theta=intd theta=theta+CI=sec2θ1+tan2θdθ=dθ=θ+C

Since sinx=tanthetasinx=tanθ, we see that theta=arctan(sinx)θ=arctan(sinx):

I=arctan(sinx)+CI=arctan(sinx)+C

Adding the bounds:

I_B=int_0^(pi/2)cosx/(1+sin^2x)dx=[arctan(sinx)]_0^(pi/2)IB=π20cosx1+sin2xdx=[arctan(sinx)]π20

color(white)(I_B)=arctan(sin(pi/2))-arctan(sin(0))IB=arctan(sin(π2))arctan(sin(0))

color(white)(I_B)=arctan(1)-arctan(0)IB=arctan(1)arctan(0)

color(white)(I_B)=pi/4-0IB=π40

color(white)(I_B)=pi/4IB=π4