How do you evaluate int cosx/(1+sin^2x)∫cosx1+sin2x from [0, pi/2][0,π2]?
1 Answer
Explanation:
First examining without the bounds:
I=intcosx/(1+sin^2x)dxI=∫cosx1+sin2xdx
Let
I=intsec^2theta/(1+tan^2theta)d theta=intd theta=theta+CI=∫sec2θ1+tan2θdθ=∫dθ=θ+C
Since
I=arctan(sinx)+CI=arctan(sinx)+C
Adding the bounds:
I_B=int_0^(pi/2)cosx/(1+sin^2x)dx=[arctan(sinx)]_0^(pi/2)IB=∫π20cosx1+sin2xdx=[arctan(sinx)]π20
color(white)(I_B)=arctan(sin(pi/2))-arctan(sin(0))IB=arctan(sin(π2))−arctan(sin(0))
color(white)(I_B)=arctan(1)-arctan(0)IB=arctan(1)−arctan(0)
color(white)(I_B)=pi/4-0IB=π4−0
color(white)(I_B)=pi/4IB=π4