How do you evaluate int dx/sqrt(4-x^2) from [0,1]?

1 Answer
Jan 3, 2017

pi/6

Explanation:

Use the substitution x = 2sintheta. Then dx = 2costheta d theta.

=>int_0^1 1/sqrt(4 - (2sintheta)^2) * 2costheta d theta

=>int_0^1 1/sqrt(4(1 - sin^2theta)) 2costheta d theta

Apply the pythagorean identity cos^2x = 1 - sin^2x:

=>int_0^1 1/sqrt(4cos^2theta) 2costheta d theta

=>int_0^1 1/(2costheta) 2costheta d theta

=>int_0^1 1 d theta

=> int_0^1 arcsin(x/2)

Evaluate using the second fundamental theorem of calculus.

=>arcsin(1/2) - arcsin(0/2)

=> pi/6

Hopefully this helps!