How do you evaluate int dx/(x^2+4x+13) from [-2, 2]?

1 Answer
Nov 24, 2016

int_(-2)^2dx/(x^2+4x+13)=1/3arctan(4/3)

Explanation:

First without the bounds:

I=intdx/(x^2+4x+13)

Complete the square in the denominator.

I=intdx/((x+2)^2+9)

Now we can use trigonometric substitution. Let x+2=3tantheta. This also implies that dx=3sec^2thetad theta.

I=int(3sec^2thetad theta)/(9tan^2theta+9)=1/3int(sec^2thetad theta)/(tan^2theta+1)=1/3int(sec^2thetad theta)/sec^2theta

I=1/3intd theta=1/3theta

From x+2=3tantheta we see that theta=arctan((x+2)/3).

I=1/3arctan((x+2)/3)

So now applying the bounds:

I_B=int_(-2)^2dx/(x^2+4x+13)=[1/3arctan((x+2)/3)]_(-2)^2

So

I_B=(1/3arctan((2+2)/3))-(1/3arctan((-2+2)/3))

I_B=1/3arctan(4/3)