How do you evaluate int dx/(x^2+4x+13) from [-2, 2]?
1 Answer
Nov 24, 2016
Explanation:
First without the bounds:
I=intdx/(x^2+4x+13)
Complete the square in the denominator.
I=intdx/((x+2)^2+9)
Now we can use trigonometric substitution. Let
I=int(3sec^2thetad theta)/(9tan^2theta+9)=1/3int(sec^2thetad theta)/(tan^2theta+1)=1/3int(sec^2thetad theta)/sec^2theta
I=1/3intd theta=1/3theta
From
I=1/3arctan((x+2)/3)
So now applying the bounds:
I_B=int_(-2)^2dx/(x^2+4x+13)=[1/3arctan((x+2)/3)]_(-2)^2
So
I_B=(1/3arctan((2+2)/3))-(1/3arctan((-2+2)/3))
I_B=1/3arctan(4/3)