How do you evaluate int sinx/(1+cos^2x) from [pi/2, pi]?

1 Answer
Jan 9, 2017

int_(pi//2)^pisinx/(1+cos^2x)dx=pi/4

Explanation:

I=int_(pi//2)^pisinx/(1+cos^2x)dx

We will make the substitution cosx=tantheta. Differentiating this shows that -sinxcolor(white).dx=sec^2thetacolor(white).d theta.

When making this substitution from x to theta, we also need to change the bounds.

  • x=pi/2=>cos(x)=cos(pi/2)=0=tan(theta)=>theta=0
  • x=pi=>cos(x)=cos(pi)=-1=tan(theta)=>theta=-pi/4

So:

I=-int_(pi//2)^pi(-sinxcolor(white).dx)/(1+cos^2x)=-int_0^(-pi//4)(sec^2thetacolor(white).d theta)/(1+tan^2theta)

Reversing the order of the bounds with the negative sign and using the identity tan^2theta+1=sec^2theta:

I=int_(-pi//4)^0d theta=[theta]_(-pi//4)^0=0-(-pi/4)=pi/4