How do you evaluate int sinx/(1+cos^2x) from [pi/2, pi]?
1 Answer
Jan 9, 2017
Explanation:
I=int_(pi//2)^pisinx/(1+cos^2x)dx
We will make the substitution
When making this substitution from
x=pi/2=>cos(x)=cos(pi/2)=0=tan(theta)=>theta=0 x=pi=>cos(x)=cos(pi)=-1=tan(theta)=>theta=-pi/4
So:
I=-int_(pi//2)^pi(-sinxcolor(white).dx)/(1+cos^2x)=-int_0^(-pi//4)(sec^2thetacolor(white).d theta)/(1+tan^2theta)
Reversing the order of the bounds with the negative sign and using the identity
I=int_(-pi//4)^0d theta=[theta]_(-pi//4)^0=0-(-pi/4)=pi/4