How do you evaluate int x/sqrt(1+x^2) from [-sqrt2,0]? Calculus Techniques of Integration Integration by Trigonometric Substitution 1 Answer sjc Mar 26, 2018 1-sqrt3 Explanation: int_-sqrt2^0x/sqrt(1+x^2)dx int_-sqrt2^0x(1+x^2)^(-1/2)dx by inspection =[(1+x^2)^(1/2)]_-sqrt2^0 =[(1+x^2)^(1/2)]^0-[(1+x^2)^(1/2)]_-sqrt2 =1-(1+2)^(1/2) =1-sqrt3 Answer link Related questions How do you find the integral int1/(x^2*sqrt(x^2-9))dx ? How do you find the integral intx^3/(sqrt(x^2+9))dx ? How do you find the integral intx^3*sqrt(9-x^2)dx ? How do you find the integral intx^3/(sqrt(16-x^2))dx ? How do you find the integral intsqrt(x^2-1)/xdx ? How do you find the integral intsqrt(x^2-9)/x^3dx ? How do you find the integral intx/(sqrt(x^2+x+1))dx ? How do you find the integral intdt/(sqrt(t^2-6t+13)) ? How do you find the integral intx*sqrt(1-x^4)dx ? How do you prove the integral formula intdx/(sqrt(x^2+a^2)) = ln(x+sqrt(x^2+a^2))+ C ? See all questions in Integration by Trigonometric Substitution Impact of this question 1603 views around the world You can reuse this answer Creative Commons License