How do you evaluate tan (pi/12) using the half angle formula?

1 Answer
Jun 21, 2016

2 - sqrt3

Explanation:

Use the trig identity:
tan 2a = (2tan a)/(1 - tan^2 a)
Trig table -->
tan 2a = tan (pi/6) = 1/sqrt3
Call tan (pi/12) = t, we get:
1/sqrt3 = (2t)/(1 - t^2). Cross multiply -->
(1 - t^2) = 2sqrt3 t
t^2 + 2sqr3t - 1 = 0
Solve this quadratic equation for t.
D = d^2 - 4ac = 4(3) + 4 = 16 --> d = +- 4
There are 2 real roots:
t = tan (pi/12) = -b/(2a) +- d/(2a) = -(2sqrt3)/2 +- 4/2 = - sqrt3 +- 2.
Since tan (pi/12) is positive, therefor,
tan (pi/12) = 2 - sqrt3
Check by calculator.
tan (pi/12) = tan 15^@ = 0.27
2 - sqrt3 = 2 - 1.73 = 0.27. OK