How do you evaluate the integral int (2x^2+x-5)/((x-3)(x+2))?

1 Answer
Feb 19, 2018

int (2x^2+x-5)/(x^2-x-6)*dx=2x+2ln(x-3)-ln(x+2)+C

Explanation:

int (2x^2+x-5)/(x^2-x-6)*dx

=int 2dx+int (x+7)/(x^2-x-6)*dx

=2x+int (x+7)/((x-3)*(x+2))*dx

=2x+int (2x+4)/((x-3)(x+2))*dx-int (x-3)/((x-3)(x+2))*dx

=2x+int (2dx)/(x-3)-int (dx)/(x+2)

=2x+2ln(x-3)-ln(x+2)+C