How do you evaluate the integral int (2x^2+x-5)/((x-3)(x+2))? Calculus Techniques of Integration Integration by Trigonometric Substitution 1 Answer Cem Sentin Feb 19, 2018 int (2x^2+x-5)/(x^2-x-6)*dx=2x+2ln(x-3)-ln(x+2)+C Explanation: int (2x^2+x-5)/(x^2-x-6)*dx =int 2dx+int (x+7)/(x^2-x-6)*dx =2x+int (x+7)/((x-3)*(x+2))*dx =2x+int (2x+4)/((x-3)(x+2))*dx-int (x-3)/((x-3)(x+2))*dx =2x+int (2dx)/(x-3)-int (dx)/(x+2) =2x+2ln(x-3)-ln(x+2)+C Answer link Related questions How do you find the integral int1/(x^2*sqrt(x^2-9))dx ? How do you find the integral intx^3/(sqrt(x^2+9))dx ? How do you find the integral intx^3*sqrt(9-x^2)dx ? How do you find the integral intx^3/(sqrt(16-x^2))dx ? How do you find the integral intsqrt(x^2-1)/xdx ? How do you find the integral intsqrt(x^2-9)/x^3dx ? How do you find the integral intx/(sqrt(x^2+x+1))dx ? How do you find the integral intdt/(sqrt(t^2-6t+13)) ? How do you find the integral intx*sqrt(1-x^4)dx ? How do you prove the integral formula intdx/(sqrt(x^2+a^2)) = ln(x+sqrt(x^2+a^2))+ C ? See all questions in Integration by Trigonometric Substitution Impact of this question 1424 views around the world You can reuse this answer Creative Commons License