How do you evaluate the integral int arc cscx?

1 Answer
Jun 21, 2018

intarc cscx dx=x*arc cscx+ln|x+sqrt(x^2-1)|+c

Explanation:

Here,

I=intarc cscxdx=intarc csc x*1dx

Using Integration by parts:

color(blue)(int(u*v)dx=uintvdx-int(u'intvdx)dx

Let,

u=arc cscx and v=1to {Let color(red)( x > 0=>|x|=x}

=>u'=-1/(|x|sqrt(x^2-1))=-1/(xsqrt(x^2-1)) and intvdx=x

So,

I=arc cscx*(x)-int[(-1)/(xsqrt(x^2-1))*x]dx

=x*arc cscx+int1/sqrt(x^2-1)dx

=x*arc cscx+ln|x+sqrt(x^2-1)|+c

Note :

If color(red)( x < 0 ,then ,|x|=-x

So,

I=x*arc cscx-ln|x+sqrt(x^2-1)|+c