How do you evaluate the integral int dx/(4+x^2)?
1 Answer
Jan 15, 2017
You may know the following rule:
intdx/(a^2+x^2)=1/aarctan(x/a)+C
So:
intdx/(4+x^2)=intdx/(2^2+x^2)=1/2arctan(x/2)+C
We can derive the
Thus,
intdx/(a^2+x^2)=int(asec^2thetad theta)/(a^2+a^2tan^2theta)
Factoring the
=int(asec^2thetad theta)/(a^2(1+tan^2theta))=int(sec^2thetad theta)/(asec^2theta)=1/aintd theta
The antiderivative of
=1/atheta+C
From
=1/aarctan(x/a)+C
Which is the above stated rule.