How do you evaluate the integral int dx/(4+x^2)?

1 Answer
Jan 15, 2017

You may know the following rule:

intdx/(a^2+x^2)=1/aarctan(x/a)+C

So:

intdx/(4+x^2)=intdx/(2^2+x^2)=1/2arctan(x/2)+C


We can derive the intdx/(a^2+x^2) rule. To do so, let x=atantheta.

Thus, dx=asec^2thetad theta and x^2=a^2tan^2theta.

intdx/(a^2+x^2)=int(asec^2thetad theta)/(a^2+a^2tan^2theta)

Factoring the a^2 terms and using the identity tan^2theta+1=sec^2theta:

=int(asec^2thetad theta)/(a^2(1+tan^2theta))=int(sec^2thetad theta)/(asec^2theta)=1/aintd theta

The antiderivative of 1 is theta, since we're working in terms of theta here:

=1/atheta+C

From x=atantheta, our original substitution, we can solve for theta. Note that tantheta=x/a so theta=arctan(x/a). Then:

=1/aarctan(x/a)+C

Which is the above stated rule.