How do you evaluate the integral int dx/(x^3+x)dxx3+x?

1 Answer
Jan 8, 2017

int (dx)/(x^3+x) = 1/2 ln (x^2/(x^2+1))+Cdxx3+x=12ln(x2x2+1)+C

Explanation:

We can write the integral as:

int (dx)/(x^3+x) = int (dx)/(x(1+x^2))dxx3+x=dxx(1+x2)

now we can substitute:

x=tantx=tant

dx= dt/cos^2tdx=dtcos2t

so we have:

int (dx)/(x^3+x) = int (dt)/ (cos^2t tan t (1+tan^2t))dxx3+x=dtcos2ttant(1+tan2t)

and using the trigonometric identity:

1+tan^2t = 1+sin^2t/cos^2t = (cos^2t+sin^2t)/cos^2t = 1/cos^2t1+tan2t=1+sin2tcos2t=cos2t+sin2tcos2t=1cos2t

int (dx)/(x^3+x) = int (dt)/ (cos^2t tan t 1/cos^2t)=int (dt)/tant= int (costdt)/sintdxx3+x=dtcos2ttant1cos2t=dttant=costdtsint

We can see that: cost dt = d(sint)costdt=d(sint), so:

int (dx)/(x^3+x) = int (dsint)/sint = ln abs sin t +Cdxx3+x=dsintsint=ln|sint|+C

To substitute back xx we can note that:

x=tant = sint/sqrt(1-sin^2t)x=tant=sint1sin2t

x^2= sin^2t/(1-sin^2t)x2=sin2t1sin2t

x^2(1-sin^2t)= sin^2tx2(1sin2t)=sin2t

x^2-x^2sin^2t= sin^2tx2x2sin2t=sin2t

x^2=x^2sin^2t+ sin^2tx2=x2sin2t+sin2t

x^2=(x^2+1)sin^2tx2=(x2+1)sin2t

x^2/(x^2+1) = sin^2tx2x2+1=sin2t

sqrt(x^2/(x^2+1)) = abs sintx2x2+1=|sint|

so that finally:

int (dx)/(x^3+x) = ln sqrt(x^2/(x^2+1)) +C = 1/2 ln (x^2/(x^2+1))+Cdxx3+x=lnx2x2+1+C=12ln(x2x2+1)+C