We can write the integral as:
int (dx)/(x^3+x) = int (dx)/(x(1+x^2))∫dxx3+x=∫dxx(1+x2)
now we can substitute:
x=tantx=tant
dx= dt/cos^2tdx=dtcos2t
so we have:
int (dx)/(x^3+x) = int (dt)/ (cos^2t tan t (1+tan^2t))∫dxx3+x=∫dtcos2ttant(1+tan2t)
and using the trigonometric identity:
1+tan^2t = 1+sin^2t/cos^2t = (cos^2t+sin^2t)/cos^2t = 1/cos^2t1+tan2t=1+sin2tcos2t=cos2t+sin2tcos2t=1cos2t
int (dx)/(x^3+x) = int (dt)/ (cos^2t tan t 1/cos^2t)=int (dt)/tant= int (costdt)/sint∫dxx3+x=∫dtcos2ttant1cos2t=∫dttant=∫costdtsint
We can see that: cost dt = d(sint)costdt=d(sint), so:
int (dx)/(x^3+x) = int (dsint)/sint = ln abs sin t +C∫dxx3+x=∫dsintsint=ln|sint|+C
To substitute back xx we can note that:
x=tant = sint/sqrt(1-sin^2t)x=tant=sint√1−sin2t
x^2= sin^2t/(1-sin^2t)x2=sin2t1−sin2t
x^2(1-sin^2t)= sin^2tx2(1−sin2t)=sin2t
x^2-x^2sin^2t= sin^2tx2−x2sin2t=sin2t
x^2=x^2sin^2t+ sin^2tx2=x2sin2t+sin2t
x^2=(x^2+1)sin^2tx2=(x2+1)sin2t
x^2/(x^2+1) = sin^2tx2x2+1=sin2t
sqrt(x^2/(x^2+1)) = abs sint√x2x2+1=|sint|
so that finally:
int (dx)/(x^3+x) = ln sqrt(x^2/(x^2+1)) +C = 1/2 ln (x^2/(x^2+1))+C∫dxx3+x=ln√x2x2+1+C=12ln(x2x2+1)+C