How do you evaluate the integral int e^(2x)sqrt(1+e^(2x))∫e2x√1+e2x?
1 Answer
Mar 1, 2017
Explanation:
Let
int e^(2x)sqrt(u) * (du)/(2e^(2x))∫e2x√u⋅du2e2x
1/2int sqrt(u) du12∫√udu
1/2(2/3u^(3/2)) + C12(23u32)+C
1/3u^(3/2) + C13u32+C
1/3(1 + e^(2x))^(3/2) + C13(1+e2x)32+C
Hopefully this helps!