How do you evaluate the integral int e^(2x)sqrt(1+e^(2x))e2x1+e2x?

1 Answer
Mar 1, 2017

1/3(1 + e^(2x))^(3/2) + C13(1+e2x)32+C

Explanation:

Let u = 1 + e^(2x)u=1+e2x. Then du = 2e^(2x)dxdu=2e2xdx and dx = (du)/(2e^(2x))dx=du2e2x.

int e^(2x)sqrt(u) * (du)/(2e^(2x))e2xudu2e2x

1/2int sqrt(u) du12udu

1/2(2/3u^(3/2)) + C12(23u32)+C

1/3u^(3/2) + C13u32+C

1/3(1 + e^(2x))^(3/2) + C13(1+e2x)32+C

Hopefully this helps!