How do you evaluate the integral int sinsqrtx/sqrtx?

2 Answers
Mar 5, 2017

-2cossqrt(x) + C

Explanation:

Let u = sqrt(x). Then du = 1/(2sqrt(x)) dx and dx = 2sqrtxdu.

int sinu/u * 2udu

2int sinu du

-2cosu + C

-2cossqrt(x) + C

Hopefully this helps!

Jun 22, 2017

-2cossqrtx+C

Explanation:

The following is an absolutely ridiculous way of arriving at the correct answer. I only did this method because this question was filed under "Trigonometric Substitutions", so I used a trig function in my substitution.

While this worked, using u=sqrtx is much more straightforward.

Let x=sin^2theta. Then dx=2sinthetacosthetad theta and sqrtx=sintheta.

I=intsinsqrtx/sqrtxdx=intsin(sin theta)/sintheta2sinthetacosthetad theta

color(white)I=2intsin(sin theta)costhetad theta

Letting t=sintheta shows that dt=costhetad theta:

I=2intsintdt=-2cost=-2cos(sin theta)=-2cossqrtx+C