How do you evaluate the integral int sqrt(1-1/x^2)?

1 Answer
Jun 24, 2017

I=intsqrt(1-1/x^2)dx

Let's try to get the integrand to resemble sqrt(1-sin^2theta). To do so, let x=csctheta. Then, dx=-cscthetacotthetad theta, and:

I=intsqrt(1-1/csc^2theta)(-cscthetacotthetad theta)

color(white)I=intsqrt(1-sin^2theta)(-cscthetacottheta)d theta

color(white)I=-intcostheta1/sinthetacostheta/sinthetad theta

color(white)I=-intcot^2thetad theta

Use cot^2theta=csc^2theta-1:

I=int(1-csc^2theta)d theta

color(white)I=theta+cottheta

Reverse the substitution x=csctheta:

I=theta+sqrt(csc^2theta-1)

color(white)I=csc^-1x+sqrt(x^2-1)+C