How do you evaluate the integral int sqrt(4+x^2)?

1 Answer
May 29, 2018

I = x sqrt(1 + x^2/4) + 2 sinh^(-1) (x/2) + C

Explanation:

I = int sqrt(4+x^2) color(red)(dx)

You can use identity:

  • cosh^2 y - sinh^2 y = 1 implies cosh^2y = 1 + sinh^2 y

So let:

  • x^2 = 4 sinh^2 y

  • implies 2 x \ dx = 8 sinh y \ cosh y \ dy

implies I = int sqrt(4+4 sinh^2 y) \ (8 sinh y \ cosh y \ dy)/(2x)

= int 2 cosh y \ (8 sinh y \ cosh y \ dy)/(2* 2 sinh y)

=4 int cosh^2 y \ dy

=4 int (cosh 2y +1 ) /2\ dy

= sinh 2y + 2 y + C qquad triangle

Considering:

  • color(red)(sinh 2y = 2 sinh y cosh y )

  • x^2 = 4 sinh^2 y implies color(red)( x = 2 sinh y) color(red)(implies y = sinh^(-1) (x/2))

  • cosh^2y = 1 + sinh^2 y implies color(red)(cosh y = sqrt(1 + x^2/4) )

Then triangle becomes:

I = 2 * x/2 * sqrt(1 + x^2/4) + 2 sinh^(-1) (x/2) + C

= x sqrt(1 + x^2/4) + 2 sinh^(-1) (x/2) + C