How do you evaluate the integral int sqrt(4+x^2)?
1 Answer
May 29, 2018
Explanation:
You can use identity:
cosh^2 y - sinh^2 y = 1 implies cosh^2y = 1 + sinh^2 y
So let:
-
x^2 = 4 sinh^2 y -
implies 2 x \ dx = 8 sinh y \ cosh y \ dy
Considering:
-
color(red)(sinh 2y = 2 sinh y cosh y ) -
x^2 = 4 sinh^2 y implies color(red)( x = 2 sinh y) color(red)(implies y = sinh^(-1) (x/2)) -
cosh^2y = 1 + sinh^2 y implies color(red)(cosh y = sqrt(1 + x^2/4) )
Then