How do you evaluate the integral int x^2sqrt(x-3)?
1 Answer
I got:
2/35(x-3)^"3/2"(5x^2 + 12x + 24) + C
We don't really like radicals, so let's try letting
du = 1/(2sqrt(x-3))dx => dx = 2udu
(u^2 + 3)^2 = x^2
Therefore, we have:
int 2u(u^2+3)^2udu
= 2int u^2(u^2+3)^2du
= 2int u^2(u^4 + 6u^2 + 9)du
= 2int u^6 + 6u^4 + 9u^2du
Now this is straightforward to integrate.
= 2(u^7/7 + 6/5u^5 + 3u^3)
= 2/7 u^7 + 12/5u^5 + 6u^3
Sub
= 2/7 (x-3)^"7/2" + 12/5(x-3)^"5/2" + 6(x-3)^"3/2" + C
This is acceptable, but we could also simplify further.
= (x-3)^"3/2"[2/7 (x-3)^2 + 12/5(x-3) + 6] + C
= (x-3)^"3/2"[2/7 (x^2 - 6x + 9) + 12/5x - 36/5 + 6] + C
= (x-3)^"3/2"(2/7x^2 - 12/7x + 18/7 + 12/5x - 36/5 + 30/5) + C
= (x-3)^"3/2"(10/35x^2 - 60/35x + 90/35 + 84/75x - 252/35 + 210/35) + C
= (x-3)^"3/2"(10/35x^2 + 24/35x + 48/35) + C
= color(blue)(2/35(x-3)^"3/2"(5x^2 + 12x + 24) + C)