How do you evaluate the integral int (x^3-1)/(x^3-x^2)?

1 Answer
May 1, 2017

The answer is =x+ln(|x|)-1/x+C

Explanation:

We need

a^3-b^3=(a-b)(a^2+ab+b^2)

intx^ndx=x^(n+1)/(n+1)+C(n!=-1)

intdx/x=ln(|x|)+C

Let start by doing some simplification

(x^3-1)/(x^3-x^2)=((x-1)(x^2+x+1))/(x^2(x-1))

=(x^2+x+1)/x^2

=1+1/x+1/x^2

Therefore,

int((x^3-1)dx)/(x^3-x^2)=int(1+1/x+1/x^2)dx

=int1*dx+intdx/x+intdx/x^2

=x+ln(|x|)-1/x+C