How do you evaluate the integral int (x^3-4)/(x+1)?
1 Answer
Jan 22, 2017
int(x^3-4)/(x+1)dx
Let
=int((u-1)^3-4)/udu
Expand
=int((u^3-3u^2+3u-1)-4)/u
=int(u^2-3u+3-5/u)du
Integrate term by term:
=1/3u^3-3/2u^2+3u-5lnabsu+C
=1/3(x+1)^3-3/2(x+1)^2+3(x+1)-5lnabs(x+1)+C