How do you evaluate the integral int (x+5)/(3x-1)? Calculus Techniques of Integration Integration by Trigonometric Substitution 1 Answer Narad T. Feb 20, 2017 The answer is =1/3x+16/9ln(|3x+1|)+C Explanation: We need intdx/x=lnx+C Let's rewrite x+5=1/3(3x-1)+16/3 So, ((x+5))/(3x+1)=1/3*cancel(3x-1)/cancel(3x-1)+16/3*1/(3x+1) int((x+5)dx)/(3x+1)=int1/3dx+16/3intdx/(3x+1) =1/3x+16/3ln(|3x+1|)/3+C =1/3x+16/9ln(|3x+1|)+C Answer link Related questions How do you find the integral int1/(x^2*sqrt(x^2-9))dx ? How do you find the integral intx^3/(sqrt(x^2+9))dx ? How do you find the integral intx^3*sqrt(9-x^2)dx ? How do you find the integral intx^3/(sqrt(16-x^2))dx ? How do you find the integral intsqrt(x^2-1)/xdx ? How do you find the integral intsqrt(x^2-9)/x^3dx ? How do you find the integral intx/(sqrt(x^2+x+1))dx ? How do you find the integral intdt/(sqrt(t^2-6t+13)) ? How do you find the integral intx*sqrt(1-x^4)dx ? How do you prove the integral formula intdx/(sqrt(x^2+a^2)) = ln(x+sqrt(x^2+a^2))+ C ? See all questions in Integration by Trigonometric Substitution Impact of this question 1576 views around the world You can reuse this answer Creative Commons License