How do you express 1/[(1+x)(1-2x)] in partial fractions?

1 Answer
Mar 9, 2016

1/((1+x)(1-2x))hArr1/(3(1+x))+2/(3(1-2x))

Explanation:

Let 1/((1+x)(1-2x))hArrA/(1+x)+B/(1-2x)

Simplifying RHS, it is equal to

1/((1+x)(1-2x))hArr(A(1-2x)+B(1+x))/((1+x)(1-2x)) or

1/((1+x)(1-2x))hArr((B-2A)x+(A+B))/((1+x)(1-2x))

i.e. B-2A=0 and A+B=1

From first we get B=2A and putting this in second we get

A+2A=1 or 3A=1 or A=1/3. As B=2A=2xx1/3=2/3, we have

1/((1+x)(1-2x))hArr1/(3(1+x))+2/(3(1-2x))