How do you express 1/(x^3-1)1x31 in partial fractions?

1 Answer

1/(x^3-1)=(1/3)/(x-1)+(-1/3x-2/3)/(x^2+x+1)1x31=13x1+13x23x2+x+1

Explanation:

the factors of (x^3-1)(x31) are (x-1)(x1) and (x^2+x+1)(x2+x+1)

Set the equations using variables A, B, C so that

1/(x^3-1)=A/(x-1)+(Bx+C)/(x^2+x+1)1x31=Ax1+Bx+Cx2+x+1

solve for the variables so that
A=1/3A=13
B=-1/3B=13
C=-2/3C=23

God bless you ...