How do you express 1/(x^3-6x^2+9x) in partial fractions?

1 Answer
Jan 7, 2017

The answer is =(1/9)/x+(1/3)/(x-3)^2+(-1/9)/(x-3)

Explanation:

Let's factorise the denominator

x^3-6x^2+9x=x(x^2-6x+9)= x(x-3)^2

Therefore,

1/(x^3-6x^2+9x)=1/(x(x-3)^2)

=A/x+B/(x-3)^2+C/(x-3)

=(A(x-3)^2+Bx+Cx(x-3))/(x(x-3)^2)

So,

1=A(x-3)^2+Bx+Cx(x-3)

Let x=0, =>, 1=9A

Coefficients of x^2,

0=A+C, =>, C=-A=-1/9

Let x=3, =>, 1=3B

Therefore,

1/(x^3-6x^2+9x)=(1/9)/x+(1/3)/(x-3)^2+(-1/9)/(x-3)