How do you express 1/(x^4 - 16)1x416 in partial fractions?

2 Answers
Jun 16, 2016

Derive a system of linear equations and solve to find:

1/(x^4-16) = 1/(32(x-2))-1/(32(x+2))-1/(8(x^2+4))1x416=132(x2)132(x+2)18(x2+4)

Explanation:

Assuming that we want partial fractions with Real coefficients, start by finding the Real factors of x^4-16x416.

Use the difference of squares identity, which can be written:

a^2-b^2=(a-b)(a+b)a2b2=(ab)(a+b)

twice, as follows:

x^4-16 = (x^2)^2-4^2x416=(x2)242

= (x^2-4)(x^2+4)=(x24)(x2+4)

= (x^2-2^2)(x^2+4)=(x222)(x2+4)

= (x-2)(x+2)(x^2+4)=(x2)(x+2)(x2+4)

Since these factors are distinct, we are looking for a partial fraction decomposition of the form:

1/(x^4-16) = A/(x-2)+B/(x+2)+(Cx+D)/(x^2+4)1x416=Ax2+Bx+2+Cx+Dx2+4

=(A(x+2)(x^2+4)+B(x-2)(x^2+4)+(Cx+D)(x-2)(x+2))/(x^4-16)=A(x+2)(x2+4)+B(x2)(x2+4)+(Cx+D)(x2)(x+2)x416

=(A(x+2)(x^2+4)+B(x-2)(x^2+4)+(Cx+D)(x^2-4))/(x^4-16)=A(x+2)(x2+4)+B(x2)(x2+4)+(Cx+D)(x24)x416

=((A+B+C)x^3+(2A-2B+D)x^2+(4A+4B-4C)x+(8A+8B-4D))/(x^4-16)=(A+B+C)x3+(2A2B+D)x2+(4A+4B4C)x+(8A+8B4D)x416

Equating coefficients, we get the following system of linear equations:

{ (A+B+C=0), (2A-2B+D=0), (4A+4B-4C=0), (8A+8B-4D=1) :}

We can write this system of equations as an augmented matrix, then solve it by performing a sequence of row operations to make the left hand side into a 4xx4 identity matrix. Then the right hand column will be ((A),(B),(C),(D))

Apologies for the length, but Gaussian elimination is like that...

((1, 1, 1, 0, |, 0), (2, -2, 0, 1, |, 0), (4, 4, -4, 0, |, 0), (8, -8, 0, -4, |, 1))

Subtract 4xxrow 1 from row 3 to get:

((1, 1, 1, 0, |, 0), (2, -2, 0, 1, |, 0), (0, 0, -8, 0, |, 0), (8, -8, 0, -4, |, 1))

Divide row 3 by -8 to get:

((1, 1, 1, 0, |, 0), (2, -2, 0, 1, |, 0), (0, 0, 1, 0, |, 0), (8, -8, 0, -4, |, 1))

Subtract row 3 from row 1 to get:

((1, 1, 0, 0, |, 0), (2, -2, 0, 1, |, 0), (0, 0, 1, 0, |, 0), (8, -8, 0, -4, |, 1))

Subtract 4xxrow 2 from row 4 to get:

((1, 1, 0, 0, |, 0), (2, -2, 0, 1, |, 0), (0, 0, 1, 0, |, 0), (0, 0, 0, -8, |, 1))

Divide row 4 by -8 to get:

((1, 1, 0, 0, |, 0), (2, -2, 0, 1, |, 0), (0, 0, 1, 0, |, 0), (0, 0, 0, 1, |, -1/8))

Subtract 2xx row 1 from row 2 to get:

((1, 1, 0, 0, |, 0), (0, -4, 0, 1, |, 0), (0, 0, 1, 0, |, 0), (0, 0, 0, 1, |, -1/8))

Divide row 2 by -4 to get:

((1, 1, 0, 0, |, 0), (0, 1, 0, -1/4, |, 0), (0, 0, 1, 0, |, 0), (0, 0, 0, 1, |, -1/8))

Add 1/4xxrow 4 to row 2 to get:

((1, 1, 0, 0, |, 0), (0, 1, 0, 0, |, -1/32), (0, 0, 1, 0, |, 0), (0, 0, 0, 1, |, -1/8))

Subtract row 2 from row 1 to get:

((1, 0, 0, 0, |, 1/32), (0, 1, 0, 0, |, -1/32), (0, 0, 1, 0, |, 0), (0, 0, 0, 1, |, -1/8))

So we find:

((A),(B),(C),(D)) = ((1/32),(-1/32),(0),(-1/8))

Hence:

1/(x^4-16) = 1/(32(x-2))-1/(32(x+2))-1/(8(x^2+4))

Jun 17, 2016

1/(x^4-16) = 1/(32(x-2))-1/(32(x+2))-1/(8(x^2+4))

Explanation:

Use the difference of squares identity:

a^2-b^2=(a-b)(a+b)

to factor the denominator.

To make things easier, break down into partial fractions in two stages:

1/(x^4-16) = 1/((x^2-4)(x^2+4))

We find:

1/(x^2-4) - 1/(x^2+4) = ((x^2+4)-(x^2-4))/(x^4-16) = 8/(x^4-16)

So:

1/(x^4-16) = 1/(8(x^2-4))-1/(8(x^2+4))

Then note that:

1/(x-2)-1/(x+2) = ((x+2)-(x-2))/(x^2-4) = 4/(x^2-4)

So:

1/(x^2-4) = 1/(4(x-2))-1/(4(x+2))

And:

1/(8(x^2-4)) = 1/(32(x-2))-1/(32(x+2))

Putting it all together:

1/(x^4-16) = 1/(32(x-2))-1/(32(x+2))-1/(8(x^2+4))